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COMPARISON OF SEVERAL METHODS FOR OBTAINING THE TIME
RESPONSE OF LINEAR SYSTEMS TO EITHER A UNIT IMPULSE OR
ARBITRARY INPUT FROM FREQUENCY-RESPONSE. DATA

By James J. Donegan and Carl R. Huss
SUMMARY

Several methods of obtaining the time response of linear systems to
elther a unit Impulse or an arbitrary input from frequency-response data
are described and compared.

Comparisons indicate that all the methods give good accuracy when
applied to a second-order system; the main difference is the required
computing time. Several of the methods when applied to higher order
systems require excessive computing time in order to obtain the same
degree of accuracy. The methods generally classified as inverse Laplace
transform methods were found to be most effective in determining the
response to a unit impulse from frequency-response data of higher order
systems.

Some discussion and examples are given of the use of the methods
as flight-data-analysis techniques in predicting loads and motions of a
flexible aircraft on the basis of simple calculations when the aircraft
frequency response is known.

INTRODUCTION

The frequency-response type of analysis used on linear systems has
found extensive application in the field of aircraft stability and in
the determination of overall dynamic characteristics of an aircraft. In
fact the current trend to perform analysis on flight test data in frequency-
response form appears to be gaining favor especially in the case of flex-
ible aircraft. Considerable emphasis has, therefore, been given to methods
of determlnlng the frequency response of a system from transient responses.
A concise résumé and comparison of methods for obtaining the frequency
response from transient responses are presented in reference 1.

This paper briefly considers the next step in the process - the
converting of the information contained in a frequency response to the
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time plane in the form of the response to a unit impulse. For certain
purposes this conversion gives data in more useful form. The response

of a linear system to a unit impulse may be used in conjunction with
Duhamel's (superposition) integral to determine (1) the aircraft transient
response to any type of input or (2) the input required to cause any
required aircraft transient response.

It appears that methods of converting frequency-response data to
transient data present a flight-data-analysis technique which permits
the prediction of aircraft motions and loads for a flexible aircraft
without knowledge of the equations of motion relating the input and
output. These methods also bypass the need for computing transfer-
function coefficients or stability derivatives in predicting these loads
and motions. Such predictions are important in anticipating the motions
and loads for more hazardous aircraft maneuvers. These methods are also
useful in predicting time responses of complicated linear systems whose
frequency response is known.

The purpose of this report is to collect and briefly compare a few
of the methods now available for performing this operation. The methods
are compared on the basis of accuracy, computing time required, and
applicability of the method to higher order systems. Some extensions of
these methods are also given. With such information available, engineers
may then select the method which best fits their needs.

SYMBOLS
F(t) function of time
H(iw) frequency response of a system
H(s) transfer function (in terms of Laplace variable s)

relating input and output

h(t) time response of a system to a unit impulse
i= -1

J index of summation

Ki,Kg,K3 transfer coefficients defined by equation (8)
K,L limits on summation of P-transform

M Mach number
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m index of summation of P-transform

N total number of date points used in solution of
equation (9)

n limit of summation

P polynominal transform operator

Re[ﬁ(iwﬂ real part of frequency response defined by equation (21)
T ordinate of pulse used to fit ReEﬁ(iwﬂ

s Laplace variable, c¢ + iw

t time, sec

X ' output

x(s) Laplace transform of x(%)

x(t) response of a system to an arbitrary input
l%l amplitude ratio of frequency response

A indicates increment

o] input

5(t) time history of input to a linear system

8 pitching velocity, radians/sec

T value of time, sec

phase angle, deg

phase angle between output x and input & of frequency

x5 response; negative phase angles indicate lag

W circular frequency, radians/sec
®y damped natural frequency, radians/sec
Wo fundamental frequency, radians/sec

@y, undamped natural frequency, radians/sec
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Subscripts:

e elevator

i index of summation indicating row

J index of summation indicating column

- A tilde indicates polynominal transform of function; for example,
F(x) denotes polynominal transform of F(t).

DESCRTPTION AND DISCUSSION OF METHODS

In this section the methods for determining the response to a unit
impulse and the methods for obtaining the response to arbltrary inputs
are discussed.

The methods for obtaining the time response to a unit impulse from
frequency-response data fall into several basic categories which may be:
generally classified as follows:

(1) Inverse Iaplace transform methods

(2) Fourier method

(3) Other methods

These methods are briefly outlined to indicate the techniques involved.
In order to describe the computations required and the accuracies
obtained, each method 1s applied to the frequency-response data of fig-
ure 1 which defines a simple second-order system described by the
transfer-function

1

s© + 65 + 10

It is usually intended that these methods be applied to higher order
systems as will be shown later in the paper. No attempt is made to

repeat the development of the methods since this information may be

obtained from the references.

Inverse Laplace Transform Methods

Floyd's method.- The method developed by George F. Floyd and described
in detail in reference 2 is referred to as Floyd's method. Floyd shows
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that the inverse Laplace transform h(t) of H(s) given by the
integral

_ 1 ctie ts
h(t) = EEE:]C-im H(s)e™” ds (2)

is for all positive values of time equivalent to

h(t) = %Lw Re [H(ia))] cos tw dw (3)

This operation is based on the assumptions that H(s) may be written
as the ratio of two rational polynominals in s with real and constant
coefficients, that lim H(s) = 0, and that H(s) has no poles in the

85— ®
right half of the s-plane or on the imaginary axis. The procedure
for performing the integration required by equation (5) is to plot
RefH(iw)] against o and then to approximate the exact shape with a
series of straight-line segments. The straight-line approximation is
written as a sum of trapezoidal functions and equation (3) is applied
to each of the trapezoids; the resulting time functions due to each
trapezoid are then added to obtain h(t).

A simple illustration is shown in sketch A:

J

Re[H(iw)] / 7/,%,g /// A

P ()
Dy @ L
Sketch A

The time function associated with a typical trapezoid (as shown by the
cross-hatched section) may be expressed as

_2 sin w2t sin AQt
hE(t) T A2< Wb )< At ) )
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where

+
o =2 %
2 2
Lo = @y
Np = =
2 2
A2—I'2(J)2

In general for n +trapezolds the time response is given by

n
_2 sin th sin Ajt
= JZ: 5 (5)

In figure 2 the real part Re[ﬁ(iwﬂ of the simple second-order
system computed from figure 1 1s shown plotted against w. The func-
tion h(t) is then easily evaluated since tables of §l%—5 are given

in reference 2. In the upper part of figure 2, two straight-line fits
to the Re[H(iwﬂ are shown, one a five-line fit and the other an eleven-
line fit. For clarity, however, only the points and not the connecting
lines of the fit are shown. In the lower part of figure 2 the resulting
responses to a unit impulse computed by Floyd's method are compared with
the exact response to a unit impulse. The accuracy of Floyd's method
depends on the number of lines used to fit the Re[H(iwﬂ and the loca-
tion of the cutoff frequency. The cutoff frequency is defined as the
maximum frequency at which the Re[H(iwﬂ was fitted. Tt should be
noted that the limits of the definite integral of equation (3) are O

to ; however, in the practical case the Re[H(iw)] is cut off at

some finite frequency. This error is reflected at the low values of
time, especially at t = O. For a given number of lines, the accuracy
also depends on the judicious fit of the lines.

Numerical-integration method.- In order to use automatic computing
machines to perform the inverse Laplace transform method, the necessary
operations indicated by equation (3) are performed in the following
manner by using a numerical-integration method. For a given value of
time t, the product curve Re[ﬁ(iwﬂ cos tw 1s evaluated over the w
range and integrated by numerical-integration techniques which give one
point on the time history of the response to a unit impulse. By repeating
the above computation for all the desired values of time, the time response
can be obtained.
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This method was applied to the freguency-response data of figure 1.
The accuracy of the method is shown in figure 3. In the upper part of
figure 3 the error due to the Interval Aw chosen for the computation
is shown by the comparison between the circle and square symbols. The
accuracy of the computation for the case of Aw = 1.0, as indicated by
the cirecle symbols, was not satisfactory beyond t = 2.0 geconds. This
result is to be expected since the interval Aw = 1.0 was too large +to
permit numerical-integration methods to perform adequately the integra-
tion required by equation (3).

Rectangular-pulse method.- A method for determining the time response
to a unit impulse from frequency-response data has recently been given
in reference 3. It 1s referred to herein as the rectangular-pulse method.
The method involves the use of tables for time-plane values equivalent
to unit rectangular pulses of the Re[ﬁ(iwﬂ . The method requires fitting
the ReEH(iwﬂ with a series of rectangular pulses or a staircase func-
tion so that the area under the curve is equal to the area of the pulse
in each case as is shown in sketch B:

. Sketch B
This fitting although made visually should be made carefully. If the

ordinate of pulse 1-is designated as rl, of pulse 2 as T,

pulse n as Tns ﬁhen the time response to a unit Impulse corresponding
to this Re[H(iw[I is given by

, and of

h(t) =Y r.h (%) (6)

The time functions hl(t), hg(t), hn(t) associated with each of

the rectangular pulses shown in sketch B are tabulated in reference 3,
These time functions are the inverse Fourier transforms of unit rectan-
gular pulses of the ReEH(iwﬂ .

The method was applied to the frequency-response data of figure 1.
The fitting of the staircase function to the Re[H(in] is illustrated
in the upper part of figure 4 and the accuracy of the method i1s demon-
strated in the lower part of figure 4. Again the error in the computed
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response to the unit impulse at t = O 1s due to cutting off the
Re[H(iuQ] at w =20 radians/sec and not integrating to « as indi-
cated by equation (3).

Fourier Method

Fourier response to unit impulse.- In reference h, the response to
a unit step input is derived by the Fourier method. Differentiating
this response gives an expression by which the response to a unit impulse
may be approximated. For a linear system characterized by its frequency

response with amplitude ratio l%t and phase angle ¢x6’ this expression

h(t) = g’fﬁni:l ,%‘(&l-l)(l)f cos Em - Lopt + (¢X5>(a'1—l)(nf] (7)

In using equation (7) the choice of the fundamental frequency Wp

determines the accuracy and length of the computations. Since the
accuracy is affected by wp 1t has been found by experience that a

value wp = %% can be used as a good first estimate, where «, 1s the

undamped natural frequency of the system. Instead of ay, the value of
frequency at which the amplitude ratio peaks for a lightly damped system
may be used. This value may be determined from the freguency response
of the system.

In table I the numerical computation of h(t) for the system defined
by the frequency response of figure 1 is shown. In this computation,
14 terms were carried in the expression for h(t), and more accuracy may
be obtained, of course, by carrying more terms. The accuracy of the
method is shown in figure 5 by the comparison between the computed and
exact response to the unit impulse.

Other Methods

Schumacher's method.- The method of reference 5 permits the computa-
tion of transfer-function coefficients by assuming the shape of the
transfer function relating the input and output and then curve fitting
this relation to the aircraft data in frequency-response form. Once the
transfer-function coefficients are known, the system is completely
specified since the response to a unit impulse input or any other arbi-
trary input may then be computed by the normal methods available for
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solving differential equations. To illustrate the method a sample
computation is performed by using the system defined in figure 1. The
differential equation relating input 8 and output x for the fre-
quency response shown in figure 1 is

D% + KiDx + Kox = Kz (8)

"By applying the vector least-squares method of reference 5, the following
set of simultaneous equations is obtained:

B ¢y ca ) L& |
R = TR = OF N R (GO
®n D
*%(m%);i gl(l l) 0 =) o (9
B B f1x)2 NE °
J%Gx)j ° .j%(lf” >J e J=a>l<'5 >J
L A, L J
where
Ax - I%Icos x5

and
By = |E|sin ds

These equations are then solved simultaneously for the transfer coeffi-
clents Kz, X;, and Kp. From the form of equation (8), i1t is seen that

the response to a unit impulse input is given by the equation

K
h(t) = ag e 8% gin agt (10)
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where

A samplé computation is shown in table II. Table IT demonstrates
the computational steps involved in solving for the transfer coeffi-

cients Kl’ K2, and K3 for the system defined in figure 1. These

transfer coefficilents are then substituted into equation (10), and a
plot of this function 1s compared with the exact response of the system
to a unit impulse input in figure 6.

This method gave additional information when applied to the second-
order system since the transfer-function coefficients were determined in
the process of the computation. A reasonable amount of computing time
was required, and good accuracy was obtained. The method, however,
requires previous knowledge of the form of the transform function
relating the input and output. Use of the curve-fitting method on the
higher order system did not prove too effective in determining all the
parameters of the flexible system. If the form of the transfer function
of the short perlod is assumed and fitted to that portion of the ailrcraft
frequency response associated with the short period then the method 1is
very effective in determining the short-period transfer-function
coefficients.

P-transform method.- The P-transform method, as described in
appendix A, differs from the other methods presented in this paper in
that the time response to a unit impulse can be determined directly
from a known response to a known arbitrary input. The computation is
carried out entirely in the time domain, bypassing the frequency plane
entirely, and does not require knowledge of the transfer function relating
the input and output. The method also represents a simple procedure for
using the response to a unit impulse and determining the response to a
given arbitrary input.

An example of the method is shown in figure 7 in which the assumed
input &(t) and output x(t) are given from which the response to the
unit impulse h(t) is computed. A comparison of the computed response
to a unit impulse and the exact response to a unit lmpulse is shown in
the lower part of figure 7.
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Response to Arbitrary Inputs

The procedure for obtalning the response to arbitrary inputs when
the response to the unit impulse is known 1s simply a matter of applying
Duhamel's integral to the response to the unit impulse and time history
of the arbitrary input. A numerical method of performing this operation
1s shown in appendix A of reference 3.

The response to a unit step input may be obtained by numerically
integrating the response to a unit impulse by using the integrating
matrix given in reference 3. In like manner, the response to a ramp
input may be obtained by numerically integrating the response to a step
function. The response to a triangular input is obtained by superposi-
tion of the responses to various ramp inputs translated along the time
scale.

The response to an arbitrary input may be obtained from the response
to a unit impulse by the P-transform method by use of equation (A4) of
the appendix.

For directly determining the time response to an arbitrary input
from frequency-response data, the Fourier method is perhaps the best
known. The general method 1s indicated in references 6 and 7. In general,
an input which can be expressed as a Fourier series can be represented as

8(t) = Ag +) Cree (sin nw,t + ¢mf> (11)

The response to the input given by equation (11) of a linear system

whose amplitude ratio 1is ,%1 and phase angle is ¢x8 can be written as

x(t) = By + i anflglnmf sin [nayt +'¢mf + (¢X8)n] (12)

n=1

For a few specific shapes of inputs the values of By, Cnuf, and
ﬁm@f of equation (12) are known. Two wave forms frequently used are the

square wave and triangular wave and examples of these are glven.
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Response to a square wave.- As indicated in reference 4 the Fourier
series for a unit square-wave input &(t) may be written as

- 1
5(t) =L + f nZ=l =3 sin(en - 1)agt (13)

n

and the response to this unit step input of a linear system of which the
amplitude ratio is l%l and the phase angle is ¢x6 is given by

x
x(t) = %l}élw_—o + 5_; 'Slénal:l;ﬁ sin Ean-l)wft + (¢x6) (21’1—1)(.0f] (14)

The accuracy of the computation depends on the choice of the optimum
fundamental square-wave frequency we and, as before, a sultable value is

usually wp = %? where wy 1s the lowest undamped natural frequency of

the system.

Response to a triangular-wave Input.- The specific form of the input
used in determining the time response to a triangular-wave Input is shown
in sketch C:

5(t)
A

e~ |

/

N\

!
-

~ s Tf/ 2

Sketch C

where Tg 1s the total period of the input, Ty is the length of the
base in seconds, and & 1is the maximum value of the input.

Without glving the analytical development, representation of the
Fourier series for this trilangular-wave input is given by
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8&)=2::C&hlsnlE%"lM¥t+¢&hl (15)
n=1
where
@ = %% radians/sec (16)
L3 Ti>
c = 1 - cos(&n - 1L)n| = (17)
2n-1 " 2(o . 1)2@%)[ <Tf
and
) - 180[% - (2n - 1)[ L (18)
2n-1 2 Te

The response to this triangular-wave Input of a linear system of which

the amplitude is ,g

and the phase angle is ¢ 5 is then
X

Plon-1)ep * <¢x6> (gn_l)%] | (19)

Here again a suitable first approximation is wp = % Wy,

For a higher order system such as a linear system with several _
structural modes (as indicated by peaks in the amplitude-ratio curve),
the choice of a fundamental frequency e becomes difficult inasmuch as

odd multiples of we must give the natural fregquency w, and the

frequency of each of the higher structural modes.
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If an input is nonperiodic and camnot be expanded into a Fourier
series directly, the Fourier transform of the input 1s used. The tables
of reference 3 may be used to determine numerically the Fourier transform
of an arbitrary input. The procedure for computing the response of a
linear system to such an arbitrary input is briefly described as follows.
The Fourier transform of the output is formed by multiplying the Fourier
transform of the arbitrary input by the frequency response of the system,
which is the ratio of the Fourier transforms of the output and input.

The inverse Fourier transform of this product is then taken which is the
time response of the system to the arbitrary input. The tables of refer-
ence 3 may also be used to perform the operation of the inverse Fourler
transform.

COMPARISON AND USE OF METHODS

Comparison of Methods

A comparison of the methods as applied to the second-order system,
defined by the frequency response shown in figure 1, may be made by
noting the differences between the exact response to a unit impulse and
the response computed by each of the methods shown in figures 2 to 7.
From these figures there appears to be little difference between the
accuracy of any one method over the others, and in each case greater
accuracy may be obtained at the cost of more computation. For the
comparisons shown, however, the computing time required by the
rectangular-pulse method was significantly less than the time required
by the other methods. The Fourier response to a unit impulse required
the most time. A listing of the methods in the order of the computing
time required for the comparisons shown in figures 2 to 7 is given as
follows:

Rectangular pulse (ref. 3)
Schumacher's (ref. 5)

Floyd's (ref. 2)

Numerical Integration

Fourier response to a unlt impulse

(A1l computations were performed on a desk-type computer. )

A more severe test of the methods occurs when they are applied to
linear systems of higher order. In order to demonstrate an application
of this type, a further comparison of the methods was made by applying
them to the system defined by the transfer function

K(e) = —— 100 e (20)

62 4 65 + 10 2 + O.bhs + 100 s° + 0.25 + 225
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The frequency response of this system is shown in figure 8. The real
part of the frequency response shown in figure 9 was computed from
figure 8 by using the relation

Re[ﬁ(iwﬂ = ‘% cos ¢x6 (21)

In figure 10 a comparison of the response to a unit impulse computed by
four of the methods is shown. For Floyd's method a 27-line fit to the
Re[ﬁ(im{} shown in figure 9 was used. For the rectangular-pulse method,
the staircase fit to the Re[H(iw)] was made with the interval

Aw = 1 radian/sec, and for the numerical-integration method, an interval
Lo = 0.5 radian/sec was used. The response of the linear system defined
by equation (20) to a triangular input shown in figure 7 of reference 3 was
used to compute the points shown in figure 10 for the P-transform method.

A time interval of At = 0.1 second was used. The Fourier response to a
unit-impulse method was found to be impractical in this case because of the
large amount of computation required to obtain any accuracy. The accuracies
of each of the four methods illustrated appear to be equivalent.

Use of ‘the Response to a Unit Impulse as a
Flight-Data-Analysis Technique

As a further comparison of the methods applied to a higher order
system, a typical longitudinal maneuver (M = 0.82) for a flexible swept-
wing airplane has been analyzed. In this case the output was the
pitching-velocity response 6 at the center of gravity of the airplane
and the input was the elevator angle &.. The analysis of this maneuver
serves to demonstrate the use of the method of obtaining the time response
of linear systems to a unit impulse from frequency-response data as a .
flight-data-analysis technique. The Fourier integrals of the output 6
and input 08, - were evaluated by using automatic computing equipment and
the methods of integration of product curves were used. The frequency
response obtained by dividing the Fouriler integral of the out qt by the
Fourier integral of the input is shown in figure 11. The ReTéL(iw)

e
computed from the frequency response of figure 11 1s shown in figure 12.
In figure 15 a comparison of the response to a unit impulse computed by
three of the methods is shown. For Floyd's method a 37-line fit to the

Re[gi(iwi} shown in figure 12 was used and hé(t) was computed at enough
e

values of time to define adequately its shape. For the rectangular-

pulse method, the staircase fit to the Re[gL(iwi} was made with the
e
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interval Aw =1 radian/sec and, for the numerical-integration method,
an Interval of Aw = 0.5 radian/sec was used. In the case of the
numerical method, points are shown in figure 13 only at time intervals
of 0.1 second in order to compare accuracles. Several attempts were
made to compute the response to the unit impulse by the P-transform
method using the original elevator input &c(t) and output &(t) shown
in figure 14. The computations were made at time intervals ranging from
0.02 second € At £ 0.1 second but did not yield satisfactory accuracy.
It appears that thls inaccuracy 1s primarily due to the sensitivity of
the method to small errors in the first few terms of the response or
input.

Time histories of the original elevator input &, and pitching-
veloclty response ® ere shown in figure 14. The elevator input 8¢

has also been used as a forcing functlon with the response to a unit
impulse shown in figure 13 to compute a time history of 6. The Duhamel
method outlined in appendix A of reference 3 with a time interval of

0.05 second was used for these calculations. A comparison of this
computed 6 response with the original © response from a flight

test is shown in the lower part of figure 14. This comparison shows the
amount of error involved in the total computation procedure (transferring
the data in time-history form to frequency-response form, then to the
response to a unit impulse, and finally to the response to an arbitrary
input by means of Duhamel's integral),

Another flight-test maneuver at M = 0.80 was selected with the
other conditions approximately the same as the previous data in order
to see how well the response to a unit impulse computed from one maneuver
could be used to predict the time response to an arbitrary input from a
different maneuver. The time histories of this maneuver are shown iIn fig-
ure 15. Also shown in the lower part of figure 15 is the é(t) response
calculated by application of Duhamel's integral to the response to a unit
impulse given in figure 135, and the elevator motion for the maneuver is
shown in the upper part of figure 15. A comparison of the computed and
measured 6 response in the lower part of figure 15 gives some indication
of how well the motions of an aircraft can be predicted by a detailed
analysis of a single maneuver.

CONCLUDING REMARKS

Several methods were compared for obtalning the time response of
linear systems to either a unit impulse or arbitrary input from frequency-
response data. The methods were compared on the basis of accuracy,
computing time required, and applicability to higher order linear systems.
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The application of each of the methods to a simple second-order
system indicated little difference between the accuracy of one method
over the others, and, in general, it would be expected that greater
accuracy could be obtained for each of the methods at the cost of more
computing time.

For higher order systems the three methods generally classified as
inverse Laplace transform methods were most effective. They gave good
results for a moderate amount of computation. All of these methods are
based on the evaluation of the form of the inverse Laplace transform
equation for positive values of time.

The methods generally classified as Fourier methods gave good
accuracy when applied to the second-order system. The accuracy of these
methods was found to depend on the choice of a fundamental frequency We s

For simple systems a suitable value was found to be wp = %?= where ay

is the lowest natural frequency. For higher order systems the choice
of wr becomes more difficult. The Fourier response to a unit-impulse
method was found to be impractical in the case of higher order systems
because of the large amount of computation required to obtain accuracy.

Schumacher's method gave additional information when applied to the
second-order system since the transfer-function coefficients were deter-
mined in the process of the computation. This method required a reason-
able amount of computing time and gave good accuracy. The method,
however, requires previous knowledge of the form of the transfer func-
tion relating the input and output. Use of the method on higher order
systems did not prove too effective in determing all the parameters of
the flexible system. A valuable use of the method was found in fitting
the known short-period transfer function to only the short-period portion
of the flexible-system frequency response to determine the short-period
transfer coefficients.

The P-transform method 1s different from the other methods presented
in that the time response to a unit impulse can be determined directly
from a known response to a known arbitrary input. The computation is
carried out entirely in the time domain and bypasses the frequency plane
entirely. The method also represents a simple procedure for using the
response to a unit impulse and determining the response to a given
arbitrary input. The method, however, when applied to the flight data
of this paper did not yield satisfactory accuracy. It appears this is
primarily due to the sensitivity of the method to errors in the first
few terms of the response or Input.

For all the examples computed in this paper the rectangular-pulse
method of NACA Technical Note 3598 required less computing time, for the
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same degree of accuracy, than any of the other methods used to obtain
the time response to a unit impulse from frequency-response data.

When an aircraft frequency response is known, it appears that these
methods may be used as a flight-data-analysis technique which permits
prediction of aircraft motions and loads wilthout knowledge of the equa-
tions of motion relating the inputs and outputs for a flexible aircraft.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., March 16, 1956.
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APPENDIX A
P-TRANSFORM METHOD

In reference 8 a linear operational calculus is introduced which
appears to be well adapted to the numerical analysis and synthesis of
linear systems. In this calculus a polynominal transform or P-transform
of a function F(t) 1s defined by the equation

F(x)

)_—i F(mAt)x" (A1)
m=-K

P[F(t)]

where F(mt) are the ordinates of F(t) at integral multiples of a
time interval At. The inverse P-transform is given by

F(t) = p~1[F(x)] (a2)

The superposition (convolution or Faltung) integral, which is also known
as Duhamel's integral, relates the input &(t), output x(t), and
response to a unit impulse h(t) (also called a memory function) of a
linear system and is given by

t
x(t) =\]F 5(t) h(t-T)ar (23)

-00
Bubb (ref. 8) shows that the P-transform of equation (A3) is
~ ~ ~
X(x) =4t 8(x) h(x) (AL)

In the synthesis problem the input &(t) and the output x(t) are
given and the response to the unit impulse h(t) is to be calculated.
This calculation is performed by forming the P-transforms of x(§) and
8(x) and dividing by ordinary polynominal division, %(x) by 8(x), to
get the P-transform of the response to the unit impulse
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h(x)

;

=7 _hx (85)

For practical cases, however, the sumation is made over a finite range
of t values. The inverse P-transform to h(x) +then gives h(t), the
time response to the unit impulse, An example of this operation is shown
in table ITII; the known input &(t) and output x(t) are shown in the
upper part of figure 7, and the computed response to the unit impulse is
compared with the analytic solution in the lower part of figure 7.

This operational calculus is also well adapted to the solution of
the analysis problem in which the system response to a unit impulse h(t)
and the input function &(t) are known and the calculation of the system
output x(t) is desired. The P-transforms of h(t) and &(t) are
formed and multiplied together by ordinary polynominal multiplication as
indicated in equation (A4). Since this operation is just the inverse of
the operation shown in table III, an illustrative example is not shown.
This method has been found to be a simple and rapid means of applying
the Duhamel process.

The value of this operational calculus lies in the fact that all
computations remain in the time domain and no translation to the frequency
plane is required. Also, only simple direct arithmetical procedures are
required for solving practical problems.



NACA TN 3701 21

REFERENCES

. Fggleston, John M., and Mathews, Charles W.: Application of Several

Methods for Determining Transfer Functions and Frequency Response
of Aircraft From Flight Data. NACA Rep. 1204, 1954%. (Supersedes
NACA TN 2997, 1953.)

. Brovm, Gordon S., and Campbell, Donald P.: Principles of Servo-

mechanisms. John Wiley & Sons, Inc., 1948, pp. 332-365.

. Huss, Carl R., and Donegan, James J.: Method and Tables for

Determining the Time Response to a Unit Impulse From Frequency-
Response Data and for Determining the Fouriler Transform of a
Function of Time. NACA TN 3598, 1956.

. Wass, C. A. A., and Hayman, E. G.: An Approximate Method of Deriving

the Transient Response of a Linear System From the Frequency
Response. Tech. Note No. GW.148, British R.A.E., Nov. 1951,

. Schumacher, Lloyd E.: A Method for Evaluating Aircraft Stability

Parameters From Flight Test Data. USAF Tech. Rep. No. WADC-TR-52-T1,
Wright Air Dev. Center, U. S. Air Force, June 1952.

. Seamans, R. C., Jr., Blasingame, B. P., and Clementson, G. C.: The

Pulse Method for the Determination of Aircraft Dynamic Performance.
Jour. Aero. Sci., vol. 17, no. 1, Jan. 1950, pp. 22-38.

. Walters, E. R., and Rea, J. B.: Determination of Frequency Character-

istics From Response to Arbitrary Imput. Jour. Aero. Sci., vol. 17,
no. 7, July 1950, pp. 446-452.

. Bubb, Frank W.: A New Linear Operational Calculus. AF Tech. Rep.
No. 6581 (ATI No. 119895), Wright Air Dev. Center, U. S. Air Force,
May 1951.



22

TABLE T
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NUMERICAT, CALCULATION ILLUSTRATING COMPUTATION OF THE

FUNCTION FOR THE RESPONSE TO A UNIT IMPULSE

BY THE FOURIER METHOD

¢5)
X X
n 2n - 1 (2n - 1)ay Y deg
1 1 0.64 0.0970 -22
2 3 1.92 .0760 -61
3 5 3.20 L0520 -91
I T 4. 48 L0350 -111
5 9 5.76 L0240 -124
6 11 7.04 .0170 -133
7 13 8.32 .0130 -140
8 15 9.60 .0100 -145
9 17 10.89 .0079 -149
10 19 12.16 . 0064 -152
11 21 13.45 .0053 -155
12 23 %L.72 .00kk -157
13 25 16.00 .0038 -159
14 27 17.30 .0033 -160
1.28

=== 0.097 cos(0.64t - 22) + 0,076 cos(1.92t - 61) +

0.052 cos(3.2t - 91) + 0.035 cos(k.k8t - 111) +

0.024 cos(5.76t - 124) + 0.017 cos(7.04t - 133) +

0.013 cos(8.%32t - 140) + 0.010 cos(9.6t - 145) +

0.0079 cos(10.89t - 149) + 0.006k cos(12.16t - 152) +

0.005% cos(13.45t - 155) + 0.004k cos(14.72t - 157) +

0.00%8 cos (16t - 159) + 0.0033 cos(17.3t -16oﬂ



NACA TN 3701

TABLE IT

NUMERTICAL CALCULATIONS ILLUSTRATING SCHUMACHER'S METHOD

25

® x Pxd ES - |x
radian;/sec ‘51 deg’ Ay = IB' cos ¢x5 By = !6} sin ¢x5
0 0.1000 0 0.10000 0
1 .0924 -33.7 07687 -.05127
2 L0745 -63.4 03336 ~. 06661
3 0555 -86.8 .00310 -.05541
4 .04 0L -104.0 -.00977 -.03%920
5 .0298 -116.6 - 01334 -.02664
6 .0225 -125.8 -.01316 -.01825
7 LOLThE -132.9 -.0118% -.0127h
8 .0139 -138.4 -.01039 -.00923
— — - % 3\
N i (‘“Bx) J - f_li (AX);] KJ -y (“)eAx> J
J=y J=wy J=ay
2
ey, 2R o |{a °
J=wy J=u J L
2
Wy D f512) y ”
- Y 0 Y <g il el |2 ofF) .
quol()‘i J=<D1H3_ ,Lj_‘_‘—d’l|J)
— 7 )
9.0 -0,9132h4 -0.15483 Kz 1.97049
-0.9132h 0.15201 0 Ky 0
| -0.15483 0 0.03069 Ko 0.15201
K5 = 1.0018
K; = 6.01865
Kp = 10.0072
Then
Kz - -3.00953t
h(t) = ﬁ e at sin ayt = 1.03e 500933 sin 0.975%
where
K2
“a =y - T
and
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Figure 1.- Frequency response of second-order system. XZ(s) = L .
‘ 5 s2 + 6s + 10
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Figure 2.- Time response to a unit impulse obtained from Floyd's method
compared to the exact values for the second-order system.
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Response to a unit impulse, h(t)

Response to a unit impulse, h(t)
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Figure 3.- Time response to a unit impulse obtained from the numerical-
integration method compared to the exact values for the second-order

system.




28 NACA TN 3701

10 K

.08 ~K

Re[H(iw))
o
I
/

ool | |

O 4 8 12 16 20
Frequency, w,radians/sec

N
-

12

Exact

0 Rectangular-pulse
method

Response to a unit impulse, h (1)

_ l )
0 D 10 1.5 20 2.5

Time, 1, sec

Figure 4.- Time response to a unit impulse obtained from the rectangular-
pulse method compared to the exact values for the second-order system.
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Figure T7.- Time response to a unit impulse obtained from the P-transform
method compared to the exact values for the second-order system.
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